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Abstract. Geomagnetic storms, disturbances of Earth’s magnetosphere
caused by masses of charged particles being emitted from the Sun, are
an uncontrollable threat to modern technology. Notably, they have the
potential to damage satellites and cause instability in power grids on
Earth, among other disasters. They result from high sun activity, which
are induced from cool areas on the Sun known as sunspots. Forecasting
the storms to prevent disasters requires an understanding of how and
when they will occur. However, current prediction methods at the Na-
tional Oceanic and Atmospheric Administration (NOAA) are limited in
that they depend on expensive solar wind spacecraft and a global-scale
magnetometer sensor network. In this paper, we introduce a novel ma-
chine learning and computer vision approach to accurately forecast geo-
magnetic storms without the need of such costly physical measurements.
Our approach extracts features from images of the Sun to establish cor-
relations between sunspots and geomagnetic storm classification and is
competitive with NOAA’s predictions. Indeed, our prediction achieves a
76% storm classification accuracy. This paper serves as an existence proof
that machine learning and computer vision techniques provide an effec-
tive means for augmenting and improving existing geomagnetic storm
forecasting methods.
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1 Introduction

Geomagnetic storms are a solar weather event that occur when masses of charged
particles are emitted from the Sun (often called solar flares or coronal mass ejec-
tions) and interact with the Earth’s magnetic field. The effects of the storms
range from inducing voltage into power grids on Earth to more catastrophic fail-
ures like causing transformers to explode or altering orbital tracks of satellites
(which could lead to collisions with other debris or spacecraft [16,13]). Forecast-
ing geomagnetic storms is therefore crucial to ensuring proper operation of these
technological systems.

Scientists at the National Oceanic and Atmospheric Administration (NOAA)
predict geomagnetic storms by collecting atmospheric measurements from mag-
netometers at several stations across the globe. Additionally, a real-time solar
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wind network of spacecraft collects atmospheric samples of high-energy particles
emitted from the Sun. Using this information, they can forecast storms for the
next 3 days [3] based on a global average across all magnetometers and spacecraft
measurements. However, ground-based magnetometers are aging and becoming
unreliable [5].

Based on the observation that sunspot activity is correlated with high solar
activity [4], we study if it is possible to use sunspot features on images of the
Sun to predict geomagnetic storms. In this paper, we leverage computer vision
on active sunspots in images to predict geomagnetic storms. Specifically, we pair
state-of-the-art supervised learning models with direct images of the Sun to pre-
dict storms, forgoing the need for a global-scale magnetometer and a solar wind
spacecraft sensor network. The prediction algorithm consists of two sequential
layers: an image processing layer followed by a prediction layer. The image pro-
cessing layer is composed of a series of image processing algorithms to extract
sunspot features. The prediction layer then uses machine learning to predict if
a geomagnetic storm will occur in the next 24 hours.

To evaluate the efficacy of our approach, we used publicly available images
of the Sun from NASA’s Solar Dynamics Observatory (SDO) [11]. The SDO
is a single satellite that collects a variety of Sun images every 15 minutes [19].
With 2843 images of the Sun, spanning from January 2012 to April 2021, our
models reached an overall accuracy of 76% across classifications. Our approach
demonstrates that machine learning techniques are an effective means towards
forecasting geomagnetic storms.

In this work, we contribute the following:

1. We show that active sunspot features can be reliably identified from images of
the Sun and are accurately correlated with geomagnetic storm classification.

2. We introduce a machine learning based technique that can forecast geomag-
netic storms from image data of just a single satellite.

3. We demonstrate that machine learning techniques are an effective means for
geomagnetic storm forecasting through a comprehensive evaluation.

2 Background

2.1 Solar Weather and Prediction Methods

Solar weather describes the time-varying conditions of space in close proximity
to Earth. The conditions are influenced by activity at the Sun that spews out
gas and charged particles from its surface into space—which is referred to as a
solar flare. The energy originates from sunspots that represent cooler areas on
the Sun’s surface. Sunspots themselves are caused by the tangling and crossing
of magnetic field lines, which produce interference from which solar flares or
coronal mass ejections (CME) arise [4].

Different magnitudes of solar flares exist, varying the effects observed on
Earth. Environmental disturbances caused by solar flares are categorized into
three events: geomagnetic storms, solar radiation storms, and radio blackouts
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(a) No Storm Detected (02/05/2018) (b) Storm Detected (03/07/2012)

Fig. 1: Image of the Sun from the Solar Dynamics Observatory Image (SDO) on
days with different storm classifications. The difference in visible sunspots can
be seen in the storm day (b) as opposed to the no storm day (a).

[4]. The Space Weather Prediction Center (SWPC) at NOAA classifies each of
these events into numbered scales, analogous to how the severity of hurricanes,
tornadoes, and earthquakes are measured. We focus our attention on geomag-
netic storms because of their prevalence when active sunspot numbers are high
[4], as illustrated in Figure 1. Specifically, we observe an opportunity to use the
sunspots (rather, images thereof) as tool for forecasting future storms.

Geomagnetic storm magnitude is determined by the Kp-Index measured at
the time of the storm. The Kp-Index quantifies the disturbance in Earth’s mag-
netic field on a scale from 1 to 9, 9 being the strongest of disturbances. According
to the SWPC, geomagnetic storms are classified as such when the measured Kp-
Index is greater than or equal to 5 [16]. The SWPC at NOAA currently has
methods to forecast the Kp-Index for the next 3 days, and issue warnings when
the Kp-Index value is expected to be greater than or equal to 5.

According to the SWPC, methods to predict and estimate the Kp-Index re-
quire a collection of ground-based magnetometer measurements from stations
around the world, and real-time solar wind measurements from a network of or-
bital spacecraft [3]. Magnetometers measure the Earth’s magnetic field strength,
and solar wind spacecraft measure the properties of solar wind at various lo-
cations around Earth’s L1 orbit. Orbital spacecraft and magnetometer stations
used to collect data are not only expensive but can be unreliable and become
inefficient as they are aging [5].

2.2 Computer Vision and Image Processing

Computer vision is a sub domain within artificial intelligence that enables com-
puters to extract meaningful information from digital inputs such as images
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and videos. Edge detection algorithms became the forefront of image processing
because of their usefulness in object recognition. They work by calculating gra-
dients on pixels to determine the change in pixel intensity as the distance from
each pixel increases. This proved to be useful to detect edges in images. Contour
mapping algorithms are also useful when an edge-detected image is provided, as
these algorithms fill in and count the closed edges of an image.

2.3 Machine Learning

Supervised learning aims to make predictions off of data that has truth labels. In
this way, an algorithm controls weighted parameters corresponding to features
of the dataset. These weights are adjusted to guide predictions based off of the
truth labels matching each data point, hence the name of supervised learning.
In our study, we use Support Vector Machines (SVMs) to formulate predictions.
The goal of SVMs is to create a n-dimensional hyperplane equation φ of tunable
weights θ and bias b such that the distance, or margin, d is defined as:

φ(xi) = θTxi + b (1)

d(φ(xi)) =
|θTxi + b|
||θ||2

(2)

Where xi is the i-th sample of the dataset and ||θ||2 denotes the Euclidean
norm of the weight vector θ. From these equations, the SVM iterates to find the
optimal weights θ∗ to maximize the minimum distance between samples [14]:

θ∗ = arg max
θ

[arg min
i
d(φ(xi))] (3)

Unsupervised learning differs from supervised learning in that there are no
truth labels, and the learner must find some hidden structure among data fea-
tures to make sense of it.

3 Methodology

Our approach consists of two layers (see Figure 2): the Feature Extraction Layer
and the Prediction Layer. In the first layer, we leverage image processing and
unsupervised learning algorithms to extract sunspot features from an image of
the Sun. Next, we use a supervised learning algorithm to exploit these features
and learn their correlation with Kp-Indices to predict geomagnetic storms.

To make the prediction, we use the sunspot features of the previous and
present day to take into account the evolution of the Sun’s activity:

1. Previous Day Active Sunspots
2. Previous Day Active Sunspot Regions
3. Previous Day Storm Existence
4. Present Day Active Sunspots
5. Present Day Active Sunspot Regions
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IMG DBSCAN

Gaussian SVM

Previous Day Sunspot and Storm Features Active Sunspots Sunspot Regions

Contour MapCanny

Data Preprocessing Max K-Index
Prediction

Image Processing Layer

Prediction Layer [Section 3.2]

[Section 3.1]

Fig. 2: Our approach to forecasting geomagnetic storms leverages a 2-layer pre-
diction pipeline and uses images of the Sun taken by the Solar Dynamics Obser-
vatory (SDO).

3.1 Image Processing Layer

To extract the needed sunspots features from the image of the Sun, we must
first estimate their boundaries, determine their number, and cluster them into
sunspot regions. We are interested in the number of sunspots because it is be-
lieved that there is a correlation between their appearance and solar activity [4].
Additionally, clustering sunspots is important to determine the number of active
sunspot regions. More active regions on the Sun indicate a higher probability of
a solar flare to be produced [17].

Edge Detection To locate the sunspots on the image, we use the Canny Edge
Detection (CED) algorithm. We use this algorithm because images of the Sun
taken by the Solar Dynamics Observatory (SDO) contain noise from white and
inactive sunspot regions that we do not want to count towards the total active
sunspot count. CED was designed to mitigate the influence of such inactive
regions; the algorithm first applies noise reduction via a Sobel Kernel and then
finds the edge gradient based on the function P , defined as the pixel intensity
values at position (x, y) on the image. The gradient G(P ) and direction θ is then
computed by:

G(P ) =

√(
∂P

∂x

)2

+

(
∂P

∂y

)2

(4)

θ = tan−1


(
∂P
∂y

)
(
∂P
∂x

)
 (5)
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Sun Image on 07/08/2014 
(Solar Dynamics Observatory) 

Outlined Sun Image 
(via Canny Edge Detection) 

Contoured Image 
(via Topological Structure Analysis) 

Fig. 3: Step by step image representation of the image processing algorithms used
to extract active sunspot features.

Once the edge gradient and angles are computed, the algorithm set to zero the
pixels that are not local maxima of the G function, a method defined as non-
maximum suppression. The result is a binary image with thin edges, but the
algorithm then uses hysteresis thresholding to find edges that were not detected
previously. This process recalls the gradient function G and requires a minimum
value input. Since our interest is in active sunspot regions (represented by darker
spots), we specify this minimum value to be 300 as we observed that inactive
region borders have an edge-gradient value just above 200. This segments the
clear dark sunspots seen in the Outlined Sun Image in Figure 3, since edge-
gradient values at inactive sunspot borders will now not be recognized as edges.

Topological Structure Analysis The edge detection algorithm produces a
binary image where the sunspots are outlined. As the magnitude of solar activity
is correlated with the number of sunspots [4], we now want to determine the
number of active sunspots. Since they appear in dark contours [17], we use the
topological structure analysis for binary images algorithm designed for its ability
to count the number of contours in images [15]. The algorithm produces another
binary image with quantified, outlined topological structures (contours) seen in
the Contoured Image in Figure 3. This lets us extract the number of sunspots
to be fed into the prediction layer.

DBSCAN To extract the unknown number of active sunspot regions on the
image, we use an unsupervised learning algorithm. The regions or clusters we will
consider are the white pixels in the binary image produced from the topological
structure analysis. The Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm provides an implementation of how to find clusters
in the data without specifying the number of regions [12]. In order to do this,
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a distance parameter ε is passed into the algorithm. This parameter helps us
define a function Nε(p) that determines the number of points within ε distance
of pixel p:

Nε(p) = {q ∈ D|dist(p, q) ≤ ε} (6)

In addition, another parameter minPts is defined as the number of points
within a distance ε a cluster is to be considered a cluster. With this parameter,
we define pixel p as density-reachable with respect to pixel q if the following
conditions are satisfied:

1. p ∈ Nε(q)
2. |Nε(q)| ≥ minPts

Iterating through each white pixel, clusters are established and the noise
created from other white pixels not part of a region of sunspots are filtered out.
The algorithm produces an integer number of clusters, that we will define as the
number of sunspot regions and pass as feature to the prediction layer.

3.2 Prediction Layer

With the number of active sunspots and active sunspot regions extracted from
the image of the Sun, the next layer of our pipeline is composed of data prepro-
cessing and machine learning techniques to formulate a prediction if a geomag-
netic storm is to occur in the next 24 hours.

To the active sunspots and active sunspot regions counts extracted in the
image processing layer for the present-day image, we also add the same features
extracted from the previous day’s image of the Sun. This helps numerically
represent how drastically sunspots have changed on the Sun’s surface just in
one day. Additionally, we include a binary feature that tells us if a geomagnetic
storm happened in the previous day. Adding this feature is extremely important
because it provides input as to what the current atmospheric conditions are.

Data Preprocessing To help the machine learning algorithm learn parameters
much more efficiently, we apply a standardization algorithm for each element in
the feature vector Xi on the ith day to create a standardized feature vector X̂i:

X̂i =


X

(i)
1 −min(X1)

max(X1)−min(X1)

...
X

(i)
5 −min(X5)

max(X5)−min(X5)

 (7)

The standardized feature vector allows for the optimization process in the
training stage of our machine learning algorithm to be much more efficient.
Especially when using an SVM, feature scaling and standardization is almost a
requirement [8].
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Gaussian Kernel SVM To forecast a geomagnetic storm, we use a Gaussian
Kernel Support Vector Machine (G-SVM) to formulate a prediction. An SVM is
a supervised learning algorithm that is well-known for its ability to perform well
in binary classification, as opposed to other supervised learning algorithms that
are known for regression. The G-SVM is a variation of an SVM that creates a
decision boundary in the data that is non-linear. A G-SVM we decide is the best
choice of learning algorithm because of its ability to create a complex decision
boundary for our high-dimensional data [18]. From the training dataset, we train
the G-SVM to predict if a geomagnetic storm is to occur in the next 24 hours; we
feed to the G-SVM the 5 sunspots features described previously and the model
will output storm if the Kp-Index is predicted to be greater than or equal to 5,
and no storm otherwise.

4 Evaluation

In evaluating our techniques, we ask the following questions:

1. Are the extracted sunspot features accurate with regards to the Internation-
ally defined Space Environment Services Center Sunspot Number?

2. How does the geomagnetic storm prediction test accuracy of our approach
compare to NOAA’s?

4.1 Experimental Setup and Datasets

Our experiments were performed using OpenCV [2] for computer vision and im-
age processing techniques, and sci-kit learn [10] for machine learning techniques.

In selecting images of the Sun that would best show sunspot details, we deter-
mine that from NASA’s Solar Dynamics Observatory (SDO), the HMI Flattened
Intensitygram images of the Sun provided the most contrast between dark, ac-
tive sunspots and light, inactive sunspots [11]. Images were then taken from the
00 : 00 : 00 hour of each day, so that the time the image was collected would
correspond to the exact time that NOAA releases next-day predictions. In total,
2843 images were collected dating from January 2012 to April 2021.

To evaluate our feature extraction, we compare our results to the Interna-
tional Space Environment Services Center (SESC) Sunspot Number (the Wolf
Number), which is determined by the number of sunspot regions (r), the number
of individual spots (s), and a vision constant (k) assigned to observers at the
SESC to remove bias from approximations [7]:

Wolf Number = k(10r + s) (8)

Data on the SESC sunspot number was collected from the Sunspot Index
and Long-term Solar Observations (SILSO) World Data Center [7].

Finally, to evaluate Kp-Index predictions from NOAA, we retrieved 1-day
Kp-Index cycle predictions from the SWPC at NOAA. Then, for the comparison
evaluation of our prediction, with NOAA’s, we took the daily Kp-Index measure-
ment data from the Helmholtz Centre Potsdam - GFZ German Research Centre
for Geosciences [9].
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Fig. 4: Feature Correlation Density Fig. 5: ROC Curve on Predictions

4.2 Feature Extraction Accuracy

To evaluate our features extraction layer, we compute the Pearson Correlation
Coefficient (PCC) between the features extracted from the Image Processing
Layer, and the SESC Sunspot Number. The PCC is a statistical measure that
finds the linear relationship between two random variables [1]. Since our algo-
rithm does not include a vision constant k as defined in the SESC Sunspot
Number, we use the PCC to quantify how similar or correlated our determined
region and sunspot numbers is without multiplying their sum by an unknown
k value. The PCC between two random variables X and Y is defined by their
sample means, x̄ and ȳ, and their respective i-th samples xi and yi:

PCC =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n
i=1(yi − ȳ)2

(9)

From the population of region and sunspot numbers extracted from the Image
Processing Layer, we create a new population X from region numbers R and
sunspot numbers S:

X = 10R+ S (10)

The PCC’s domain is [−1, 1], where −1 represents a 100% negative correla-
tion, and 1 a 100% positive correlation. We then compute the PCC between the
random variable X defined from our sunspot features, and a random variable
Y representing the population of SESC sunspot numbers. A PCC of 0.66 was
obtained, showing moderate to strong linear relationship between our features
and the SESC Sunspot Number.

The SESC Sunspot Number counts the total number of sunspot and sunspot
regions (active and inactive). However, we specifically use hyperparameters in
Canny that segment the darker, active sunspots and sunspot regions from the
lighter, inactive ones. Evidence of this is shown when computing average loss
between X and Y, which is −35. Thus, explaining why a PCC of 0.66, in this
case, is a very strong result; our Image Processing Layer was able to extract
sunspot and sunspot region numbers from images of the Sun very efficiently.
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4.3 Prediction Layer Accuracy

Using the features extracted in the Image Processing Layer, we test our Pre-
diction Layer against NOAA’s SWPC predictions with respect to the defined
Kp-Index values.

Supersampling Techniques and Model Training From the 2843 data
points from our dataset, 88% of the data was composed of the no storm geo-
magnetic storm class (Kp-Index value less than 4). When supervised learning al-
gorithms, such as an SVM, are trained on imbalanced data, the machine learning
algorithm learns to only predict the majority class. To combat this severe class
imbalance, we apply the Synthetic Minority Oversampling Technique (SMOTE)
algorithm to generate synthetic data points of the minority storm geomagnetic
storm class. SMOTE is the de facto algorithm for machine learning with im-
balanced data, as it can effectively generate synthetic data in space where a
minority class occupies [6].

From the authentic dataset, we do an 80% train-test-split, stratified by the
minority class. Stratification allows us to balance the number of minority sam-
ples distributed among the train and test sets. From the train set, we perform
synthetic oversampling with SMOTE, and train our G-SVM on the authentic
data reserved for training, as well as synthetic data.

Model Testing and Comparison From the 2843 original data points, a ran-
domly selected 20% of the data is reserved for testing. Stratifying the minority
storm classification, the test set was composed of 503 random no storm classi-
fications and 66 random storm classifications. To evaluate the accuracy of the
trained G-SVM, we plot a Receiver Operating Characteristic (ROC) curve on
testing data. The ROC curve shows the efficacy of the decision boundary created
by the G-SVM by plotting the false-positive rate over the true-positive rate in
classification. The closer the curve is to the top left of the graph (Figure 5),
the more accurate the G-SVM is considered. From the graph, Area Under the
Curve (AUC) is used as the true accuracy of the classifier. An AUC value of 0.76
indicates that our model achieves a 76% overall weighted accuracy across both
classifications.

Prediction Method Class Precision Recall Accuracy

G-SVM no storm 0.95 0.73 0.76storm 0.26 0.73

SWPC no storm 0.94 0.90 0.86storm 0.46 0.61
Table 1: Classification Metrics Across Prediction Methods

To compare our results to the SWPC at NOAA, we consider the 1-day storm
prediction data provided from the SWPC. From the testing data used in the
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ROC curve, we retrieve the SWPC predictions for those same days, and evaluate
based on precision, recall, and weighted accuracy scores on both methods. From
Table 1, precision and recall scores show that our model is competitive with the
state-of-the-art industry prediction method with only using features collected
from image processing, as opposed to collecting physical measurements from
ground-based magnetometers and solar wind sensors from spacecraft in orbit.

5 Conclusion

This paper proposes a new approach to forecasting geomagnetic storms. With
our solar system approaching another sunspot maximum, methods to predict
such storms are becoming extremely important. Current prediction methods
are limited in that they rely on solar wind measurements from spacecraft and
magnetometer measurements from ground-based stations across the world. In
this paper, we introduce a prediction method operating on sunspot features
extracted by computer vision from images of the Sun. We show that machine
learning techniques can leverage these sunspot features to accurately predict if
a storm is to occur in the next 24 hours. Our algorithm consists of an image
processing layer in which active sunspot features are collected via edge detec-
tors and topological analysis. Then, active sunspot features are processed and
used to forecast a geomagnetic storm with supervised learning techniques. Test
accuracy is demonstrated to be competitive with the state-of-the-art model, in-
dicating that sunspot features can be leveraged in concert with machine learning
techniques to accurately forecast geomagnetic storms.
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